6 research outputs found

    qgam: Bayesian non-parametric quantile regression modelling in R

    Get PDF
    Generalized additive models (GAMs) are flexible non-linear regression models, which can be fitted efficiently using the approximate Bayesian methods provided by the mgcv R package. While the GAM methods provided by mgcv are based on the assumption that the response distribution is modelled parametrically, here we discuss more flexible methods that do not entail any parametric assumption. In particular, this article introduces the qgam package, which is an extension of mgcv providing fast calibrated Bayesian methods for fitting quantile GAMs (QGAMs) in R. QGAMs are based on a smooth version of the pinball loss of Koenker (2005), rather than on a likelihood function, hence jointly achieving satisfactory accuracy of the quantile point estimates and coverage of the corresponding credible intervals requires adopting the specialized Bayesian fitting framework of Fasiolo, Wood, Zaffran, Nedellec, and Goude (2020b). Here we detail how this framework is implemented in qgam and we provide examples illustrating how the package should be used in practice

    Fast calibrated additive quantile regression

    Full text link
    We propose a novel framework for fitting additive quantile regression models, which provides well calibrated inference about the conditional quantiles and fast automatic estimation of the smoothing parameters, for model structures as diverse as those usable with distributional GAMs, while maintaining equivalent numerical efficiency and stability. The proposed methods are at once statistically rigorous and computationally efficient, because they are based on the general belief updating framework of Bissiri et al. (2016) to loss based inference, but compute by adapting the stable fitting methods of Wood et al. (2016). We show how the pinball loss is statistically suboptimal relative to a novel smooth generalisation, which also gives access to fast estimation methods. Further, we provide a novel calibration method for efficiently selecting the 'learning rate' balancing the loss with the smoothing priors during inference, thereby obtaining reliable quantile uncertainty estimates. Our work was motivated by a probabilistic electricity load forecasting application, used here to demonstrate the proposed approach. The methods described here are implemented by the qgam R package, available on the Comprehensive R Archive Network (CRAN)

    Electricity load forecasting and backcasting with semi-parametric models

    No full text
    International audienceWe sum up the methodology of the team tololo for the Global Energy Forecasting Competition 2012: Load Forecasting. Our strategy consisted of a temporal multi-scale model that combines three components. The first component was a long term trend estimated by means of non-parametric smoothing. The second was a medium term component describing the sensitivity of the electricity demand to the temperature at each time step. We use a generalized additive model to fit this component, using calendar information as well. Finally, a short term component models local behaviours. As the factors that drive this component are unknown, we use a random forest model to estimate it

    qgam: Bayesian Nonparametric Quantile Regression Modeling in R

    Get PDF
    Generalized additive models (GAMs) are flexible non-linear regression models, which can be fitted efficiently using the approximate Bayesian methods provided by the mgcv R package. While the GAM methods provided by mgcv are based on the assumption that the response distribution is modeled parametrically, here we discuss more flexible methods that do not entail any parametric assumption. In particular, this article introduces the qgam package, which is an extension of mgcv providing fast calibrated Bayesian methods for fitting quantile GAMs (QGAMs) in R. QGAMs are based on a smooth version of the pinball loss of Koenker (2005), rather than on a likelihood function, hence jointly achieving satisfactory accuracy of the quantile point estimates and coverage of the corresponding credible intervals requires adopting the specialized Bayesian fitting framework of Fasiolo, Wood, Zaffran, Nedellec, and Goude (2021b). Here we detail how this framework is implemented in qgam and we provide examples illustrating how the package should be used in practice
    corecore